
EMBODY(1) Environment Modules EMBODY(1)

NAME
Embody ! Environment Modules Build system

SYNOPSIS
./EMBODY [options]

DESCRIPTION
Embody (Environment Modules Build) is a software build tool with integrated support for the environ-
ment-modules package. The tool eases and automates the task of building and installing software packages
from source or binary distributions, as well as the management of associated moduleles.

OPTIONS
Stage selection
The following options select one or more so-called staging functions. Without an explicit selection, all
staging functions (except stage_clean) are executed in order.

!x, !!excise Remove the installed modulele.

!u, !!uninstall Remove the installed package (implies !!excise).

!d, !!distclean Perform distclean stage; default: make distclean or setup.py clean.

!p, !!prep Perform prep stage; default: ./configure, NOP for setup.py.

!b, !!build Perform build stage; default: make or setup.py build.

!i, !!install Install; default: make install or setup.py install

!a, !!aux Install auxiliary les; no default.

Experimental: Prior to the actual call to stage_install_aux, the current EMBODY
script will be preserved in $prefix/ as .EMBODY, and the build directory will
be symlinked as .src.

!m, !!module Install the modulele.

!t, !!test Perform a test; default: make check or make test (depending on Makele);
test.py for python. Prior to running stage_test, the new modulele will be
loaded.

!c, !!clean Perform cleanup; default: make clean or setup.py clean.

!X, !U, !D, !P, !B, !I, !A, !M, !T
!!no!excise, !!no!uninstall, ...

Perform all default stages except the given stage.

Modulele management

!e, !!edit Edit the modulele.

!l, !!list List installed module versions and show the contents of .version, if it exists.
Option !v gives more details.

!r, !!remove Remove the modulele.

!s, !!show Construct and show the modulele, but do not install.

Control

!1, !2, !3, ... (any numeric option) Limit a multi-build to just the corresponding line(s) from
$BUILD_MULTI (see MULTI-BUILDS below).

!n, !!no!run dry!run — do not actually run the staging functions.

!f, !!force Remove various safeguards and permit running as root.

embody-0.9.21 2009-04-01 1

EMBODY(1) Environment Modules EMBODY(1)

!w, !!wipe Wipe embody log directories (all builds).

General options

!h, !!help Show option summary.

!q, !!quiet Suppress trace output (test output is still shown).

!v, !!verbose Generate verbose output; may be repeated to get increased verbosity.

!!version Print libembody version number.

!!debug Generate debugging output.

Av ailable options
EMBODY is normally a shell script and may process its own options. Any options not consumed will be
interpreted by libembody. Without requiring the use of !!, a few alphabet slots are available: !j, !k, !o,
!y, !z. See <http://www.faqs.org/docs/artu/ch10s05.html> for customary meanings.

OPERATION
Embody consists of a library libembody and a user-dened package-specic EMBODY script, both written
in bash (1).

Package placement
Empty deploys software in package-specic top-level directories, typically with subdirectories like bin, lib,
man, as determined by the package’s native install procedure. The name of the top-level directory is gener-
ated in a variable $prefix, which is constructed roughly as:

$PACKAGE_ROOT/$NAME-$VERSION-$BUILD

where the constituent variables are dened by the user in EMBODY and by site-defaults in libembody. A
modulele (5) is automatically created and placed in

$MODULE_ROOT/$NAME/$VERSION-$BUILD

If, during modulele installation, a modulele from a prior version exists in $MODULE_ROOT/$NAME/, a
.version le is created if it does not already exist, so as to prevent premature use of the new build by user’s
shells. The site administrator must edit or remove this .version le (see ‘‘Modulele management’’
options), preferably after users have been notied of the upgrade. The user must have write permission in
$PACKAGE_ROOT and $MODULE_ROOT. With a proper setup, such as one employing group permissions,
it should not be necessary to become root.

Staging Functions
Package deployment is done by a series of staging functions in bash (1) syntax. Default functions are
pre!dened, and may be re-dened by the user in the EMBODY script. The predened functions detect a
couple of deployment styles and execute the canonical action as described above under OPTIONS. The rec-
ognized styles are, in this order:

• rpmbuild (8) from a spec le

• Python-style setup.py

• GNU-style congure + make

The functions and their correspondence to options are:

embody-0.9.21 2009-04-01 2

EMBODY(1) Environment Modules EMBODY(1)

===============================
Function name Option

stage_excise -x
stage_uninstall -u
stage_distclean -d
stage_prep -p
stage_build -b
stage_install -i
stage_install_aux -a
stage_module -m
stage_test -t
stage_clean -c

embody_stages
embody_wipe -w
===============================

Unless any of the specic options are given to EMBODY, all staging functions above except stage_clean are
run in sequence, as hardcoded in the embody_stages sequencing function.

A build-specic directory is created in the package source tree to hold log les and (eventually) a test direc-
tory:

embody-$VERSION-$BUILD/

The output of each individual stage is logged into:

embody-$VERSION-$BUILD/<stagename>.log

and the output of the whole EMBODY run is logged into:

embody-$VERSION-$BUILD/last.log

The EMBODY script
The user creates an EMBODY script in the package’s unpacked distribution directory. The name can be any-
thing, but EMBODY sorts before README or INSTALL and stands out. The script must do the following:

• set package-related variables (NAME, VERSION, BUILD)

• set variables for modulele content (MODULE_WHATIS, MODULE_HELP, etc.)

• load the embody module and any modules that are prerequisite for the current package

• source the embody library

• (re!)dene zero or more staging functions

• run the embody_stages sequencing function

Variables in the EMBODY script
The following variables are expected to be set in the EMBODY script:

* Package denition
NAME Package name, without version and build tags. Acceptable characters are letters

(possibly in mixed case), numerals, and dashes ‘‘!’’. Underscore ‘‘_’’ is dis-
couraged, and any other ‘‘funny’’ characters are disallowed.

VERSION Package version [optional]. Should consist of numerals, dot ‘‘.’’, and letters.

BUILD Build tag [optional]; can be arbitrarily long. Acceptable characters as in NAME.

BUILD_MULTI A multi-line build specication (see MULTI-BUILDS below). Ignored when
BUILD is set.

embody-0.9.21 2009-04-01 3

EMBODY(1) Environment Modules EMBODY(1)

SPECFILE name of an rpm (8) specle. The variables NAME, VERSION, BUILD, MOD-
ULE_WHATIS, and MODULE_HELP are set from contents of the spec le, but
may be overridden.

* Site defaults
The following are normally predened in the site’s libembody le:

PACKAGE_ROOT base directory for packages

MODULE_ROOT base directory for moduleles, default: $PACKAGE_ROOT/modulefiles

* Modulele help items
These following are converted to proc ModulesHelp and module−whatis, respectively:

MODULE_WHATIS whatis string (should be one line) ! required. If this value is missing, the mod-
ulele creation will be skipped.

MODULE_HELP Help text, may be several lines.

* Modulele contents
These are placed verbatim into the modulele (leading spaces are stripped):

MODULE_DEP Zero or more conflict foo or prereq foo

MODULE_CORE The bulk part of the modulele, prepend PATH etc.

MODULE_AUX Package-specic auxiliary denitions.

The staging functions have access to all of these variables.

Automatisms

1. NAME and VERSION are actually optional and are guessed from the package directory if it is named in
the customary form name!x.y.z. Directories of the form name!x[.y[.z]][!more] are also recognized.

2. If MODULE_CORE is left empty, is is guessed based on the existence of subdirs found in $prefix/
after stage_install. A complete such guess is equivalent to the following:

MODULE_CORE="
prepend-path PATH \$prefix/bin
prepend-path MANPATH \$prefix/man
prepend-path MANPATH \$prefix/share/man
prepend-path PYTHON_PATH \$prefix/lib/python
prepend-path PYTHON_PATH \$prefix/lib64/python
prepend-path LD_LIBRARY_PATH \$prefix/lib
prepend-path LD_LIBRARY_PATH \$prefix/lib64
prepend-path INCLUDE \$prefix/include

"

3. For convenience, an environment variable <NAME>_HOME is automatically added:

setenv <NAME>_HOME $prefix

This is a customary installation requirement for many packages, and also gives users a uniform names-
pace to access the active package, e.g. $FOO_HOME/share/. <NAME> is the uppercased value of
$NAME, with − replaced by _.

MULTI-BUILDS
A BUILD_MULTI variable specied in EMBODY results in several closely related builds. The format is
multi-line (requiring enclosing single or double quotes), as follows:

embody-0.9.21 2009-04-01 4

EMBODY(1) Environment Modules EMBODY(1)

comment
buildtag1 var1=value var2=value ...
buildtag2 var1=value var2=value ...
...

Each line denes a value for BUILD and several associated variables. EMBODY will be called recursively
once for each line. During each call BUILD will be set to its respective buildtag and all associated vari-
ables will have their respective values. Empty lines and ‘#’!style comments in BUILD_MULTI are
ignored. Setting an explicit value for BUILD will preempt a multi!build.

VARIABLES
In addition to any variables dened in ./EMBODY, the following variables are available to staging func-
tions:

BUILD (during multi!builds)
Will be set to each buildtag in turn.

package_build = $VERSION−$BUILD
Unique indentier of the current build; automatically added to the modulele as Tcl variable ver-
sion.

package_name = $NAME−$package_build
Fully qualied package name.

prefix = $PACKAGE_ROOT/$package_name
Installation destination directory; automatically added to the modulele as Tcl variable prefix.

embody_logdir = embody−$package_build
Workdir for current build logs.

embody_testdir = test−embody−$package_build
Name of a build-specic test directory.

This is intended to keep a native test directory pristine across subsequent builds, should the make
distclean step be ignorant of it. The directory will be created cleanly for each build; it is up to the
user to populate this directory in stage_test. After stage_test, the directory will be moved to
$embody_logdir/test. The directory is created initially in the toplevel source directory because
some test procedures use relative paths in constructs like −I../include.

module_name = $NAME/$package_build
Full module name with version, refers to a le under $MODULE_ROOT.

module_dir = $MODULE_ROOT/$NAME
Path to modulele without version.

FILES
$EMBODY_HOME/bin/libembody

The Embody library.

<package_name>/EMBODY
User-generated Embody script.

$EMBODY_HOME/share/doc
Documentation and example les.

BUGS
Options must be given individually (cannot be clustered). This shouldn’t hurt too much unless you’re run-
ning EMBODY over and over.

Dry-run mode does not show actions inside staging functions.

SEE ALSO
module (1), modulele (5), bash (1), rpm (8), rpmbuild (8)

<http://trac.anl.gov/embody/>

embody-0.9.21 2009-04-01 5

EMBODY(1) Environment Modules EMBODY(1)

AUTHOR
Michael Sternberg, Center for Nanoscale Materials at Argonne National Laboratory.

COPYRIGHT
Copyright (C) 2009, UChicago Argonne, LLC; All Rights Reserved.

OPEN SOURCE LICENSE
Redistribution and use in source and binary forms, with or without modication, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer. Software changes, modications, or derivative works, should be noted with
comments and the author and organization’s name.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and
the following disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the names of UChicago Argonne, LLC or the Department of Energy nor the names of its con-
tributors may be used to endorse or promote products derived from this software without specic prior
written permission.

4. The software and the end-user documentation included with the redistribution, if any, must include the
following acknowledgment:

‘‘This product includes software produced by UChicago Argonne, LLC under Contract No.
DE!AC02!06CH11357 with the Department of Energy.’’

DISCLAIMER
THE SOFTWARE IS SUPPLIED ‘‘AS IS’’ WITHOUT WARRANTY OF ANY KIND.

Neither the United States GOVERNMENT, nor the United States Department of Energy, NOR UChicago
Argonne, LLC, nor any of their employees, makes any warranty, express or implied, or assumes any leg al
liability or responsibility for the accuracy, completeness, or usefulness of any information, data, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.

embody-0.9.21 2009-04-01 6

